用户手册

MIZ-21C

MIZ-21C 使用手册 .docx

1.	设备功能与布局	3
2.	导航及控制	6
3.	屏幕显示基本布局	9
4.	使用指南	14
5.	工具菜单	18
6.	产品说明	20
7.	电池更换	21

1. 设备功能与布局

1 电源开关

2 控制按钮

4 接口面板

7 保护壳

8 扶手带

USB 接口可用于链接附加外设,如鼠标、键 盘、耳机或存储设备。USB 接口也支持一个 USB 集线器的连接,这样可以同时连接几个 外设;

连接探头时将探头上红点对准接口的红点,轻轻插入到 MIZ-21C 中,直到插入到位。要拆卸连接器,请抓住探头连接器外壳的防滑壳,轻轻拉出插销,以便拆卸探头;

充电端口

MIZ-21C 只能连接到所提供的电源适配器和电缆进行充电和/或操作。使用不当的电源适配器可能导致数据丢失或仪器损坏。

MIZ-21C 型号

MIZ-21C 有三种不同的型号,具有不同的功能,适合多种应用。以下三种型号对应着不同的功能 特性。

功能特征	MIZ-21C-SF	MIZ-21C	MIZ-21C-ARRAY
电导率	~	¥	~
单频	\checkmark	¥	✓
双频		¥	✓
旋转扫查器		¥	✓
涡流阵列			✓

2. 导航及控制

触屏操作

MIZ-21C 显示包括触摸 UI, 允许用户以一些非常有用的方式与软件应用程序交互。在整个软件应用程序中, 可以根据当前屏幕和动作启用各种触摸 UI 手势。下面是 MIZ21C 使用的手势。

R

单击在大多数屏幕上允许您选择菜单项或移动数据屏幕上的功能;

双击在选择屏幕上使用,以提供更深层次的功能。例如,使用表面阵列技术时 双击 C 扫描显示界面将激活带有 C 扫描显示选项的菜单;

收缩缩放提供与屏幕映像直接交互的附加特性。例如,在 Lissajous 2D 校准屏幕上进行缩放和缩放,可以用来调整信号放大比例;

可以通过选择"工具"菜单并导航到"触摸屏首选项"菜单来禁用触屏控制。

控制按钮

集成到 MIZ-21C 的前面板是几个用户控制按钮,为许多功能提供了屏幕上的软件按钮的替代。 当工作需要使用手套时,这可能是有用的,可能不兼容的触摸屏启用。下表提供了有关控件按钮 使用的信息。

4 (1)	指针移动 可控制当前激活屏幕窗格内指针上下左 右的移动,中间的选择按钮单击可将当前 C 扫图像放大
	功能按键 对应着屏幕最底下三个软件按钮,按对 应的功能按键或进行触控操作可实现同 样的功能
	开始及停止采集按键 左右采集按键功能一致,均可进行数据 采集及停止

显示导航

系统可以通过直接触摸屏幕上适当的项目或通过控制键来 导航。初始屏幕显示了 MIZ-21C 的应用程序选项。屏幕右 箭头符号 ■指示从该菜单选项有进一步的导航。选择菜单 选项可以通过触摸屏方法或通过控制按钮来执行。

触摸屏	控制按钮
直接选择屏幕上的 菜单项	使用上/下光标按钮将 高亮部分上下移▲ ☑. 通过选择或右箭头按 钮选择菜单项 ❹】.

MIZ-21C 设计和操作简单,在整个检测过程中,状态栏 中会一直提供控制提示,用户就可以清楚了解到如何使 用当前特性。

3. 屏幕显示基本布局

显示模式回根据当前使用的应用类型进行设置。MIZ-21C 可支持 2D 及 3D 显示, 屏幕下面的内 容会自动根据当前模式调整为对应的功能选项, 用户即可进行相关操作。

应用类型	2D	3D
螺栓孔		\checkmark
电导率及涂层厚度测量	\checkmark	
近表面检测	\checkmark	
表面阵列		\checkmark
表面裂纹	\checkmark	

常见数据显示功能

在不同的数据显示类型中, MIZ-21C 提供了 一些通用接口组件。当不主动获取数据 时, 左边的接口组件可以在 2D 和 3D 数据 屏幕上看到。在获取数据时,最大化数据 显示区域以获得最佳的可见性,隐藏这些 特征。

以下会介绍各部分的详细信息。

状态栏显示一般的系统状态,包括日期,时间, 电池状态,Wi-Fi和蓝牙状态;

主标题区域显示当前使用的技术名称。当对已保 存的技术应用编辑时,名称旁边会出现星号,表 示已修改;

屏幕模式菜单

	_	De	fau	uit				2018 10 :	-03-0 10 : 0	1 🗖 0 🔊	100%	
ſ	J		3	à	}	Ś	Ţ			2	Z	
1.	200kł	łz	-19°	H:	0.4v/c	1	V: 0.	4v/d	20	dB	12	
					6		\triangleright					
				6	2							
~~	~~			~~	~~	~~	-1 ^{-r}		$\overline{\wedge}$			
				,	Adjust	Curso	r	A	djust F	Positio	n	

该功能是一个横跨整个屏幕顶部的菜单,用于快速访 问各种功能选项,当前被选择的选项将会被点亮成蓝 色;

主菜单导航

触摸屏	控制按钮
直接选择屏幕上的	使用左或右光标按钮
菜单项	导航 🜗

屏幕控制菜单

在采集屏幕上,当采集不处于活动状态时,屏幕控制菜 单处于活动状态,允许直接调整信号。从左到右,控制 选项是通道、相位、信号缩放、增益和驱动电压; 相位角及数据缩放比例用于数据校准过程;

增益和驱动是该技术参数,改变这些值将修改当前技术 文件。

控制	调节
通道	触摸屏幕上的菜单来切换频道或使用向上和向下箭头键 🖶
相位	调整信号的相位角可通过直接旋转屏幕上的信号或使用翻进行粗调,翻进行微 调。相位调整阶段,屏幕底部的菜单将处于激活状态,点击"完成"按钮即可完成 相位校准
数据缩放	选择屏幕菜单启用比例调整模式。信号的大小可以通过"缩放"手势或使用 🖤 或 者 🛢 控制按钮。屏幕底部的上下文菜单将在比例调整期间激活。点击"完成"按 钮将保存更改。 除使用手动缩放特征外,自动缩放缺陷将自动在技术参数内设置缺陷。
增益	触摸屏幕上的菜单,会弹出增益设置菜单,修改后的增益值将在下一次使用 start/stop 采集按钮 💵后生效
驱动电压	选择屏幕菜单,开启涡流驱动电压设置菜单,通过启动/停止采集按钮,将在下 一次采集开始时对驱动电压值进行更改■■。

快捷菜单

Defau	ult	2018-03-01 10 : 10 : 00 🧟 🕸 100%	该特性
	$\hat{\mathbf{x}}$		它会根
1: 200kHz -19°	H: 0.4v/d V: 0	0.4v/d 20dB 12v	也可使
			不同屏 按钮进
			快捷菜
			触摸厚
			直接边 菜单项
	Adjust Cursor	Adjust Position	

是一个横跨整个屏幕底部的三选项菜单, 据当前屏幕模式而改变。可通过屏幕操作 用屏幕下方对应位置的功能按钮;

幕模式之间的导航可以通过触摸屏或控制 行。

单导航

触摸屏	控制按钮
直接选择屏幕上的	按功能按钮选择 📟 直接
菜单项	在屏幕选项下面

数据显示区域

对于一般的 2D 和 3D 数据类型,数据显示区域的显示方式不同,但布局是相似的。显示区域 对应 Lissajous 数据窗口内的部分数据。Lissajous 数据窗口由 2D 显示的蓝色阴影区域或 3D 显 示的白色实线边界表示。

4. 使用指南

第一次使用前,请阅读第3页的安全注意事项,以确保安全操作。以下信息提供了 MIZ-21C 的 快速开机操作步骤。

仪器开机

C

稍用力短暂按下面板上的电源按钮,即可启动 MIZ-21C,系统正常启动需要几秒钟的时间。

仪器关机

稍用力按下电源键即可将 MIZ-21C 进行关机,软件版本变更后有可能需要长按进行关机操作。

选择应用类型

Touch screen or press 11 to navigate list. Touch screen or press to select.	<i>a</i> \$ 100%
Applications	
Bolt Holes	>
Conductivity and Coating Thickness	>
Sub-Surface	\geq
Surface Array	>
Surface Cracks	\geq
ZETEC THE INSPECTION ADVANTAG	
	Tools

MIZ-21C 开机后会进入初始默认界面,将显示 MIZ-21C 当前型号支持的各种应用类型。技术类型可通过触屏 或者控制按钮完成。

触摸屏	控制按钮
直接选择屏幕上黄 色高亮选项	使用上/下光标按钮将 高亮部分上下移动 ■■。通过选择或右 箭头按钮选择菜单项

检测技术选择

技术屏幕将显示当前可在 MIZ-21C 上使用的技术列表, 包括系统默认及用户自己建立保存的技术文件;

技术文件可被复制、修改、锁定。**单击屏幕**,或使用**选** 择按钮、右箭头按钮●】均可查看、编辑当前技术文件;

确认当前技术文件之后。使用**开始/停止采集**按钮 📟 即 可进行检测;

系统默认技术默认是锁定状态的;

若要返回到**应用类型**界面,可选择屏幕下方的 Application…或者单击屏幕上方的 ① 主页图标。

Touch screen or press 11 to navigate list.									
	()	\mathbf{r}	Ţ		S				
Surface Array Techniques									
Name: De Probe: Su Drive Moo Frequency Encoder S Sample Ra Access: Lo	efault Abso irface Array de: Absolute y: 400 kHz iampling: Ou ate: 50 per i bocked	i <u>lute</u> e n inch			>				
Name: Default Reflection Probe: Surface Array Drive Mode: Reflection (32) Frequency: 400 kHz Encoder Sampling: On Sample Rate: 50 per inch Access: Locked					>				
Applic	ation	Ca	ру	Del	ete				

查看技术文件

Det	fault /	2018-03-0 ⁻ 10 : 10 : 0	1 1 00%							
分	$\langle \rangle$	\square	Ļ		Þ					
Current Technique										
Name: Default Absolute Application: Surface Array Probe: Surface Array Drive Mode: Absolute Gain: 40 dB Frequencies: 1 Encoder Sampling: On Sample Rate: 50 per inch Data Buffer Size: 24 in V/H Scale Ratio: Lock to 1:1 Auto Rotate/Scale Mode: Single Scale Auto Rotate/Scale Mode: Single Scale Auto Rotate/Scale Mode: Single Scale Auto Rotate Liftoff Orientation: 60° Auto Scale Defect Height: 5 divisions C-scan Shading: Color										
Channel 1: Absolute <i>(32 coil)</i> Frequency: 400 kHz Drive: 19 volts Filters: Median (3 in), Spike (5 dp) Alarm: Off										
				Ed						

用户可以浏览当前检测技术的详细参数,滑动屏幕,或 者使用向上/向下光标按钮 ■■可浏览更多。 要返回到技术列表,请从下方菜单中选择列表; 点击编辑后可进入技术详情页对相应参数进行修改,

技术编辑(以表面阵列技术为例)

探头选择: Surface Array Flex (注意选择对应的探头型 号)

驱动模式选择:一般收发式

增益最大可达: 53dB, 需根据信号适当调节;

频率可选择单频或双频,双频可同时激发两种频率;

编码器采样开则使用编码器记录数据,若选择关闭则仪 器按时钟触发的形式记录数据,记录快慢可根据需要调 节;

点击屏幕下方保存,可以随时保存修改后的技术。如果 当前锁定了该技术,将提示**保存该技术的副本**还是**取消** 保存当前修改,锁定的技术无法进行修改,需在编辑页 面将该技术进行解锁。

数据采集

确认合适的探头与检测技术之后,按**开始/停止采集**按钮 ■■可进入信号采集,仪器会自动跳转到信号采集界面,采 集界面的视图类型可自主定义;

选择 - 图标可选择 C 扫、3D 视图、阻抗平面图等视图;

采集数据之前,可使用清楚按钮将数据缓冲区的数据清除;

数据采集之前,将探头放置在检测试块上无缺陷处,点击 **平衡**/Instrument Null,平衡之后即可进行信号采集,信号采 集完全之后可按下**停止采集按钮**■□即可结束信号采集。

数据校准菜单下提供了对应工具来调整信号显示

相位角、信号放大比例。屏幕下方数据缓冲区内白色实线 框可用于选择需要进行校准的数据段;

旋转信号的相位角将缺陷信号凸显同时降低噪声信号,自动旋转可将信号一次性旋转到技术文件内对应设定的角度,左右按钮可进行粗调⁴,上下按钮进行微调∞∞;

调节信号放大比例可用于调节信号的缩放,适当调节缩放 比例有助于提高检测的信噪比,按压选择按钮
可将 C
扫视图白色实线框内信号局部放大;

调整数据显示的另一个方法是调节滤波器 , 涡流阵 列检测时最常用的中值滤波, 作用是保留边缘信号, 中间 的信号取周围信号的均值以达到信号平滑的目的, 用户可 根据信号的显示实时调节滤波器;

注意:滤波器的使用不当可能会过滤掉缺陷信号

5. 工具菜单

工具菜单提供了一系列工具和操作 MIZ-21C 的选项。有些选项是针 对某些特定的应用类型,以下是工具菜单功能的简要描述。

系统语言

MIZ-21C 提供了多种用户语言可供选择,可以在此菜单项下设置;

屏幕亮度

控制背光屏幕亮度。MIZ-21C 系统还会根据应用情况自动将屏幕调整到不同的亮度水平;

音频

用于设置闹钟和提示音量时;

长度单位

设置线性参考的测量单位;

涂层厚度单位

设置电导率垫片厚度测量单位设置涂层厚度显示值;

电导单位

设置电导率值的标度标准,以%IACS或mS/m(微米每米)表示;

Lissajous 数据窗口

设置在数据显示区域中可见的数据文件的百分比,以控制显示区域中信号的重叠;

网格选项

为包含网格线的显示模式(如 Lissajous 显示)打开或关闭网格线;

采集方向

翻转 C 扫和数据缓冲窗口如何将数据滚动到屏幕上的方向,这取决于操作人员的偏好;

阵列线圈定位

该特性设置了该技术中编码器采样时表面阵列探头的移动方向。

触摸屏

该功能可以启用或禁用显示器的触摸模式;

网络

当通过 USB 到以太网适配器的硬件网络连接连接时,本节将显示 MIZ-21C 的 IP 地址;

硬件诊断

MIZ-21C 内置有硬件诊断来测试系统性能,快速诊断可执行许多功能的检查,而不需要外部设备。标准诊断和表面阵列诊断需要增加一个外接负载,以测试系统的更多特性。诊断测试执行期间将提供可视化反馈,并在完成时提供可查看的报告。

文件管理

保存后数据文件可以查看, 删除, 或复制到外部 USB 驱动器,

此外,文件管理允许浏览保存的屏幕截图。

系统更新

系统更新提供以下功能:

- 1. 调整操作系统的数据和时间设置;
- 2. 更新软件和固件;
- 恢复出厂应谨慎使用,所有用户应用到系统设置的改变将被重置,同时删除系统上的所有数据文件和屏幕截图。

状态与信息

此选项提供操作系统的当前版本号、MIZ-21C 软件、MIZ-21C 固件、MIZ-21C FPGA 程序的报告。此外,系统的当前 运行时间和关键部件的温度也会显示出来。

6. 产品说明

屏幕截图

长按**□□**信号采集按钮即可进行屏幕截图,保存的截图可在**工具**菜单中的**文件管理**选项查看捕获的屏幕。

将文件保存到 USB

进入"**工具**"菜单内的"**文件管理**"选项后,屏幕下方会提示可 复制到 USB 内,点击可即可将截图或数据文件保存到外部 (USB)存储。

MIZ-21C 采用专门的锂离子电池。更换电池时,只可使用专为 MIZ-21C 设计并由 Zetec 提供的电池。使用其他电池可能会导致 MIZ-21C 的损坏或人身伤害。